
7
AD-Ai3i 281 LANGUAGE PROCESSING FOR SPEECH UNOERSTANDING(U) BOLT

BERANEK AND NEWMAN INC CAMBRIDGE MA W A WOODS JUL 83
BBN-5376 N888i4-77-C-037i

UNCLRSSIFIED F/G 5/7 NL

*mmmmmumi:

Q36

111IL2 LA.1.

MIROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUI OF STANDARDS 1963-A

Bolt Beranek and Newman Inc.

ADA13 1281

Report No. 5376

Language Processing for Speech Understanding
Technical Report

W.A. Woods

U

July 1983

Prepared for:

J The Office of Naval Research A

83 08 08 032

.'. .I

Trint1 a-Qqi fi nd

SIRCUmIT CLASSIFICATION OF THIS PAGE (ften Do*ere*~. _______________

DOCUENTAION AGEREAD INSTRUCTIONS
REPORT_____ DOCUMENTATION________PAGE_ BEFORE COMPLETINGFORM

. REPORT NUMBER 12. GOV AC2MNO: -.RECIPIENT'S CATALOG lUM89ER

BBEN Report No. 5376
1,. TITE(n .~fe S. TYOREORT R& PUERIO CVEE

LANGRUAMIG POAIZAINNAM NO SPEEH UNERTNDN TeROGial eMN.pr CT

Bolt Beranek and Newman Inc. AREA & WORK UNIT NUMOER11

aridge, VA 22185

IXI10MITORING AGENCY HNM a AOORKSS(If dife.,.,a 0061 COVIC0*j0#118 OffCO 15. SECURITY CLASS. (of this e port)

unclassified

1S.. DECtASSIFICATION/ COWNORROING
SCM EOLE

IS.- DISTRIOUION STA~TEMENT (of thi. Report)

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

I?. DISTRIGUTI@N STATEMENT (01 Ift. k000aeteter.ed in Stock 20It aI9e,.e 1111 Rde')

10. SUPPLEMENTARY NOTES

1S. KEY WORDS (Cemea revrsee side it necoseery.5 wNIb atl 6r ock mbwo)

Speech, speech-understanding, SUR, control strategy, parsing,
middle-out parsing, ATN grammars, EWIM, shortfall density scoring.

20. ASSiRACT (ConhWe a e i , .1 11 0060088F 40d Iis511p 6F Nsck 01b060)

"This report considers language understanding techniques and control
strategies that can be applied to provide higher-level support to aid in
the understanding of spoken utterances. The discussion is illustrated with
concepts and examples from the BEN speech understanding system, * The
HWIM system was conceived as an assistant to a travel budget manager, a
system that would store information about planned and taken trips, travel
budgets and their planning. The system was able to respond to commands

00 1 JAN72 1402 EDrnITO I0 Nov OS is omtLEra Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Do#* Enet~d

-.- - - - - - -1111f Z.

S . r,,.-.,..-
.

, -. * o . -- .- i '-... . A - - -,

Unclassified
SUCUIYV CLASSIPICATION OF THIS PAG g (" .WO .-.atm

Qt 20. Abstract (cont'd.)

and answer questions spoken into a microphone, and was able to
synthesize spoken responses as output. HWIM was a prototype

system used to drive speech understanding research. It used a
phonetic-based approach, with no speaker training, a large
vocabulary, and a relatively unconstraining English grammar.
Discussed here is the control structure of the HWIM and the
parsing algorithm used to parse sentences from the middle-out,
using an ATN gra-r.

.1.j"

aid

.4

IS

Unclassified.
MICUUIfY CLASSIPICATION OF THIS PAGE (Won NOeeTntou.)

~~~ -A. . . .



Report No. 5376

LANGUAGE PROCESSING FOR SPEECH UNDERSTANDING

Technical Report

July 1983

Principal Investigator:
William A. Woods
(617) 497-3361

Accession For

Vl

Prepared by:

Bolt Beranek and Newman Inc.
10 Moulton Street

P1 Cambridge, Massachusetts 02238

Prepared for:

A The Office of Naval Research

This research was supported by the Office of Naval Research
under Contract No. N00014-77-C-0371. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Office of Naval
Research or the U.S. Government.

I
' ' " ' '-" ' ;' "" " -' " ".. . .. . . . . . . . . . ....... .. .."" "' "'" " ' '-n ", ..... . . . .n , , :,. . . '



Report No. 5376 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page

1. THE PROBLEM OF SPEECH UNDERSTANDING 1

'7 1.1 Knowledge Components for Speech Understanding 3
1.2 Putting it all Together 4

2.CONTROL STAEISFOR SPEECH PERCEPTION 7

2.1 island-Driven Strategies 9
2.2 Priority Scoring 11
2.3 Shortfall Scoring 12
2.4 Density Scoring 14
2.5 Shortfall Density Scoring 15
2.6 Focus of Attention by a MAXSEG Profile 15
2.7 Admissible versus Inadmissible Strategies 16

3. ATM GRAMMARS 19

3.1 HWIM's ATN Grammar Notation 23
3.2 A Middle-Out View of an ATN Grammar 24
3.3 Cascaded ATN's 28

1 3.4 Lexical Retrieval as an ATN 30
3.5 Benefits of CATN's 33

• .-..... -....-. ,.,.:......-..,............... .... ,......,, ......... . .. .,



77 -77-- : l

Bolt Beranek and Newman Inc. Report No. 5376

4. MIDDLE OUT PARSING WITH ATNIS 35

4.1 State Relations Used in the HWIM Parser 37
4.2 Paths 39 7
4.3 The Parser 40
4.4 The Principal Parser Functions 41
4.5 Starting an Island 42
4.6 Processing an Arc 42
4.7 Connecting a New Word to an Island 43
4.8 Processing the Completion Queue 45
4.9 Completing a Constituent 46
4.10 Making Predictions 47

5. MIDDLE-OUT PARSING WITH CATU'S 49

ii

, . €, 
*

, ',J ' .' .' #. '..' #o" ". .' .'-• " .''" . ..'. ' . -. . . ., -. . . '. ". '. •. . .. - 1



Report No. 5376 Bolt Beranek and Newman Inc.

LIST OF FIGURES

FIG. 1. MEASURING SHORTFALL FROM A MAXSEG PROFILE 13
N FIG. 2. AN EXAMPLE OF AN ATN GRAMMAR 21

FIG. 3. A BNF SPECIFICATION OF HWIM'S ATN GRAMMAR 24
NOTATION

FIG. 4. A LEXICAL DECISION TREE 31
FIG. 5. A PROTOTYPICAL ISLAND CONFIGURATION IS SHAPED 36

LIKE A STILE

I

I

i

:iii



Report No. 5376 Bolt Beranek and Newman Inc.

1. THE PROBLEM4 OF SPEECH UNDERSTANDING

A fundamental characteristic of the speech understanding
task, above and beyond the difficulty of acoustic phonetic
recognition, is that there is generally not enough information in
the acoustic signal alone to determine the phonetic content of
the message. Acoustic cues are sufficient to constrain the

-~ possible identities of a given sound but frequently not
sufficient to uniquely determine its identity. For example, it
may be possible to determine that a given sound is a weak
fricative but not whether it is an Of" or "th". The subtle
acoustic cues which distinguish these sounds may be unreliable or
unavailable either due to noise or distortion in the
communication channel or to errors in pronunciation or lack of
careful articulation on the part of the speaker.

There is ample evidence from human perceptual experiments
[Wanner, 1973] that this inability is not just a limitation of
mechanical signal analysis and computerized acoustic-phonetic

analysis, but rather a fundamental characteristic of human
speech. The human listener is highly skilled at using his
"common sense" knowledge of the vocabulary and syntax of his

language and his expectations for what his speaker might say to
compensate for small errors in pronunciation, and possibly for
this reason, people generally don't speak any more distinctly
than is necessary to make themselves understood.

Thus, one cannot expect to achieve continuous speech
understanding without making use of the higher level constraints
imposed on an utterance by the vocabulary and syntax of the
language and the knowledge of what makes sense. In this chapter
I will consider language understanding techniques and control

LWN1



Bolt Beranek and Newman Inc. Report No. 5376

strategies that can be applied to provide higher level support
from these sources to aid in the understanding of spoken

utterances.

The discussion will be illustrated with concepts and
examples from the BBN speech understanding system, HWIM (which
stands for OHear What I Mean") [10, 8]. The HWIM system was
conceived as an assistant to a travel budget manager, a system
that would store information about planned and taken trips,
travel budgets and their status, plane fares and per diems, and
other information important to planning. This task was chosen as
a small and easily comprehensible version of a generalized
management problem. The system was able to respond to commands

8..

and answer questions spoken into a microphone and was able to
synthesize spoken responses as output.

HWIK was a prototype system used to drive speech
understanding research, and during the life of the project
reached a level of performance where it could understand
approximately 50% of a set of new test utterances, using a
phonetic-based approach, with no speaker training, and a
relatively unconstraining English grammar. Although the system
was never fully debugged and tuned and its acoustic phonetic
knowledge was incomplete, the success rate for complete
understanding of (52%) of a 400 word system (branching ratio 67)
fell only 8 percentage points (To 44%) when tested with no
further tuning on a 1000 word vocabulary (branching ration 196).
This indicates a substantial robustness in the method.

2



W- WT 17 " 7 - -.- ~ *-7*

Report No. 5376 Bolt Beranek and Newman Inc.

1.1 Knowledge Components for Speech Understanding

One can identify the following conceptually distinct sources
of knowledge as important in determining the interpretation of a
spoken utterance:

a) Segmentation and Labeling

A process of detecting acoustic-phonetic events in the
speech signal and characterizing the nature of the

Etb) individual segments of the signal.

A process of retrieving candidate words from the
lexicon that are acoustically similar to the labeled
segments.

c) Word Matching

A process of determining some measure of the goodness
of a word hypothesis at a given point in the speech

lei signal.

d) Syntax

The ability to determine if a given sequence of words
is a possible subpart of a grammatical sentence and to
predict possible continuations for such sentence

fragments.

The ability to determine if a given hypothesized
sentence is meaningful or nonsensical (in addition to :
being grammatical).

f) Pragmatics

The ability to determine if a sentence is appropriate
to the context in which it is uttered, given knowledge
of the particular speaker, the task he is trying to
accomplish, and what has been said previously in the
discourse.

3



7- 7: s .7 V- -7 7.

Bolt Beranek and Newman Inc. Report No. 5376

g) Prosodics

The ability to use cues such as intonation and rhythm
to predict the possible syntactic structure of an
utterance or to confirm or reject a proposed syntactic
structure.

In addition to these sources of knowledge, there is a major
issue of coQntrol, i.e., the framework and algorithms for making
decisions about which possible fragmentary hypotheses to rule
out, which ones to pursue further by trying to find compatible
interpretations of adjacent portions of the utterance, when to
return to a previously rejected hypothesis in light of new
information, etc.

1.2 Putting it all Together

It is one thing to say that all of the above processes and
sources of knowledge must interact in the understanding of
continuous speech. It is another thing to know how to do it. A
variety of different approaches have been explored. Generally, -

they fall into two classes -- top down, or syntax driven, and
bottom-up, or lexically driven. Some systems attempt to take a
grammar of possible things to say and use it to predict possible
words which the system then attempts to verify against the input.
Other systems attempt to recognize words either at the phoneme or
syllable level and then use dictionary entries for these words to
drive a syntactic component. In both cases, one component is
used as a generator of possible hypotheses and the other as a
filter.

In general, the syntax driven approaches are successful only



-S

Report No. 5376 Bolt Beranek and Newman Inc.

for highly constrained applications where the system has a good
chance of predicting a small number of choices for the next word

at each point in the input. For less restricted situations, only
* lexically driven approaches have been moderately successful,

-. although this requires some clever lexical retrieval techniques
to avoid having to match every possible vocabulary item against
the input.

A major problem is how to integrate the different sources of
*knowledge in such a way as to exploit their interaction. For

example, the HWIM system, for lack of any more suitable

integrative framework, combined syntactic, semantic, and

pragmatic information into a single mpragmaticn ATN grammar,

while keeping separate components f or the phonetic and lexical
levels. The CMI Harpy system [6] achieved integration by
compiling a finite state grammar together with lexical and

phonetic information into a single network of possible phoneme
sequences, each path through which corresponded to a possible
sentence. Hearsay-I [5], on the other hand, created a
blackboard structure to attempt to coordinate a diverse
collection of multiple knowledge sources.

In what follows, I will attempt to set forth a framework in
which to view the interaction of such knowledge sources and

discuss some general algorithms and techniques for using higher
* level knowledge for speech understanding.

5



.............................. . . .

Bolt Beranek and Newman Inc. Report No. 5376

.5

-S

5

5

A

N'

.4

.4

.4
N'

.4

~1

S

..1

6

....................................... . . . . . . S

.......................

.~ *~*~*~N~N' . N N - -N, - -- -............ . N
S NW * N.-.-



. .. . . - - '. . . -..: , - -= - ---..- . . . L- -" - 5 
'  

,

Report No. 5376 Bolt Beranek and Newman Inc. 7
2. CONTROL STRATEGIES FOR SPEECH PERCEPTION

Speech understanding is a special case of a general class of

perceptual processes. Perception can be viewed as the process of
forming a believable coherent hypothesis which can account for

some or all of one's sensory stimuli. Although this process is
generally subconscious and one is not aware of any substeps, it
can be thought of computationally as a derivation of a

comprehensive hypothesis that is arrived at by successive
refinement and extension of partial hypothesis until a best
complete hypothesis is found. I will refer to this successive
refinement as incremental lin.-

In general, a perceptual system must incorporate some basic
epistemological assumptions about the things which it can

perceive and the rules governing their assembly. That is, the
object perceived is generally a compound object, constructed from
members of a finite set of elementary constituents according to
known well-formedness rules. The well-formedness rules can be

used to reject impossible interpretations of the input stimuli,
and may also be useable to predict other constituents that could

be present if a given partial hypothesis is correct. The *1
elementary constituents, as well as the relationships among them

that are invoked in the well-formedness rules, must be directly

perceptible. In the case of speech understanding, the directly
perceptible elements are the basic speech phonemes (or perhaps

* their features), and the well-formedness rules are the rules

governing their formation into words, phrases, sentences, and
coherent discourse.

In this section, we will be concerned with strategies

governing the formation and refinement of partial hypotheses

7



I7
Z4

Bolt Beranek and Newman Inc. Report No. 5376

about the identity of a speech utterance. We assume a system
that contains the following components:

a) A Lexical Retrieval component that can find the k best
matching words in any region of an utterance subject to
certain constraints and can be recalled to continue
enumerating word matches in decreasing order of
goodness (where possible constraints include anchoring
the left or right end of the word to particular points
in the utterance or to particular adjacent word
matches). We assume that this component is interfaced
to appropriate signal processing, acoustic-phonetic and
phonological analysis components, as in HWIM, and that
it assigns a "qualityu score to each word match
reflecting the goodness of the match.

b) A Linguistic component that, given any sequence of
words, can determine whether that sequence can be
parsed as a possible initial, final, or internal
subsequence of a syntactically correct and semantically
and pragmatically appropriate utterance, and can
propose compatible classes of words at each end of such
a sequence.

A control strategy for such a system must answer questions
such as:

a) At which points in the utterance to call the LexicalRetrieval component, and when,

b) What number of words to ask for,

c) When to give subsequences of the results to the
Linguistic component, and

d) When to recall the Lexical Retrieval component to
continue enumerating words at a given point.

... °

The goal of the control strategy is to dinc osr the bp Z±
my2oring A2QUene 2L words thaL n tne egntLre utterance and I1
aJggpetab th Linguiai.t component. We will consider here a
particular class of control strategies which we refer to as
"island-driven".

8



'77

Report No. 5376 Bolt Beranek and Newman Inc.

2.1 island-Driven Strategies

In an island-driven control strategy, partial hypotheses

about the possible identity of the utterance are formed around
initial "seed" words somewhere in the utterance and are grown
into larger and larger "island" hypotheses by the addition of
words to one or the other end of the island. Occasionally, two
islands may "collide" by proposing and discovering the same word
in the gap between them and may then be combined into a single
larger island.

Each island hypothesis is evaluated by the Lexical Retrieval
component to determine its degree of match with the acoustic
evidence and is checked for syntactic, semantic, and pragmatic
consistency by the Linguistic component. We will refer to a -

partial hypothesis that has been so evaluated and checked for
consistency as a "theory'. The strategies that we will consider
operate by successively processing "events" on an event queue,
where events correspond to suspended or dormant processes that

may result in the creation of theories.

The general algorithm operates as follows:

(1) An initial scan of the utterance is performed by the
- Lexical Retrieval component to discover the n best matching words

anywhere in the utterance according to some criterion of "best"
and for some value n. An initial seed event is created for each

Asuch word and placed on the event queue. In addition, one or
more continuation events, which can be processed to continue the

Fl enumeration of successively lower scoring words (regardless of
position in the utterance), is created and placed on the queue.

*1 Each seed event is assigned a prio.rit~y score (derived, in one of

9



Dolt Beranek and Newman Inc. Report N.57

* several ways to be described shortly, from the qu~ality score that
*the Lexical Retrieval component gave it) . Each continuation
* event is assigned a priority score that can be guaranteed to

bound the priority score of any word that can be generated by
that event (e.g., derived from the score of the last word
enumerated prior to the continuation). The events are ordered on

* the event queue by their priority scores and are processed in
order of priority.

(2) The highest priority event is selected for processing.
This consists of (i) creating the corresponding theory (a one-
word theory in the case of a seed event) , (ii) calling the
Linguistic component to check the consistency of the theory and

-'to make predictions for words and/or word classes that can occur

adjacent to it, at each end of the theory, (iii) calling the
*Lexical Retrieval component to enumerate the k best matching

words satisfying these predictions at each end of the theory, and
(iv) generating a word" event for each such word found. A word
event is an event that will add one word to a theory to create a
larger theory. Continuation events are also created that will
continue the enumeration of successively lower scoring words
adjacent to the theory. If island-collision is permitted as an

operation (island collision is a feature than can be permitted or
not), then each word event generated is checked against an island
table to see if the same word (at the same position in the input)

* has been proposed and found in the other direction by some
4theory. If so, an *island-collisionm event is created that will

combine the new word and the two theories on either side of it.
Both word and island-collision events are assigned priority
scores derived from the quality scores of the words that they
contain and are inserted into the event queue according to their
priorities.

.4.4 10



rump wrr. r.-

Report No. 5376 Bolt Beranek and Newman Inc.

(3) Step 2 is repeated until a theory is discovered that

A spans the entire utterance and is syntactically, semantically,
and pragmatically acceptable as a complete sentence.

Although the basic island-driven strategy is presented here

as involving an initial scan of the entire utterance before

beginning the processing of events, there is nothing to prevent
an implementation from dovetailing this initial scan with the
event processing so that, for example, event processing on the
early portions of an utterance could begin before the entire

utterance had been heard.

2.2 Priority Scoring

The score assigned to a theory by the summation of lexical
retrieval scores we refer to as the gisalit &ar of the theory.

One can distinguish this from a possibly separate score called
the priority sara, which is used to rank order events on the

event queue to determine the order in which they are to be done.
A desirable property for a priority score is a guarantee that the
first complete theory found will be the best scoring one that can
be found. Using the quality scores directly as priority scores

does not ordinarily provide such a guarantee. That is, a

straightforward "best-first' search strategy does not guarantee

discovery of the best overall hypothesis.

An algorithm that is guaranteed in this way to find the best

entity in some search space is said to be & ,aa2i. For speech

understanding applications, admissibility is a desirable
property, but not necessarily essential if the cost of its
attainment is too great. In this section we will discuss several

11.



Bolt Beranek and Newman Inc. Report No. 5376

priority scores, derived from but not identical with the quality
score, that result in admissible algorithms. The first measures
the difference between the quality score for a theory and an
upperbound on the possible quality for any theory covering the
same portion of the utterance. This is called the shorfall.1
score. Two other priority scores are obtained by dividing either

the quality score or the shortfall score by the time duration on
the island to give quiality density and saho~rtfall denpity scoring,

A respectively.

2.3 Shortfall Scoring

Shortfall scoring measures the amount by which the score of
a theory falls below an upper bound on the possible score that
could be achieved on the same region. When shortfall scoring is -

being used, a MAXSEG profile is constructed having the property
that the score of a word match between boundaries i and j will be
less than or equal to the area under the MAXSEG profile from i to
j (call this latter the MAXSCORE for the region from i to J).
The shortfall score for a theory is then computed as the sum over
all the word matches in the theory of the difference between the
score of the word match and the MAXSCORE for the same region.
The relationship of the MAXSBG profile to the actual score of a
theory is illustrated in Figure 1.

The theoretical characteristics of the shortfall scoring
* algorithm are that if the words are returned by the Lexical-

Retrieval component in shortfall order and events are processed
in order of increasing magnitude of shortfall (plus a few other

*assumptions, documented in (14]), then the first complete

12



Report No. 5376 Bolt Beranek and Newman Inc.

N
Q MAX(i) T= MAX(i)

K
M=1 MAX0i)

K
Q=E SEGi)

SEG(i)
P=T-M+Q

1 4 5 6 7 8 9 10 11 12131415161718 t

FIG. 1. MEASURING SHORTFALL FROM A MAXSEG PROFILE

spanning interpretation found will be the best scoring
interpretation that can be found by any strategy (modulo ties).
For any quality metric that is additive, shortfall scoring is
admissible without searching the entire space of possible word
sequences. The proof of admissibility depends only on the fact
that when the first complete spanning theory is found, all other
events on the queue will already have fallen below the ideal
maximum score by at least as much. Thus the result does not
depend on the scores being likelihood ratios, nor does it make
any assumption about the nature of the grammar (e.g., that it be
a finite state markov process), provided a parser exists that can

13



77--7 7 7 7- 777 7 -7 -"

Bolt Beranek and Newman Inc. Report No. 5376

make the necessary judgements. The admissibility of the basic
shortfall method also does not depend on the order of scanning

the utterance -- it is true both for middle-out and for left-to-

right strategies.

2.4 Density Scoring

Another type of priority scoring is density scoring. Here
the score used to order the eventqueue is some basic score
divided by the duration of the event. Conceptually, we can think
of this scoring metric as predicting the potential score for the
region not covered by a theory to be an extrapolation of the same
score density already achieved. (In these terms, the shortfall
strategy can be thought of as predicting that the potential score

for the uncovered region will achieve the upper bound.) Unlike
the shortfall scores, density scores can get worse and then get
better again as new words are added to a theory. Hence the
density score is not guaranteed to be an upper bound of the
expected eventual score. However, it has another interesting
property: in exactly those cases where it does not upperbound the
eventual score, there is a word to be added somewhere else that
has a better score density and whose score density does
upperbound the eventual score. This arises from the property of
densities that the density of two regions combined will lie

between the densities that they each have. It turns out that
this alone is not sufficient to guarantee admissibility, since it
is still possible for the density score starting from the best
correct seed to fall below that of some other less-than-optimal

spanning theory before it can be extended to a complete theory
itself. However, with the addition of a facility for island

14

m' - " %4 4m , , - . . " " - ". - . .. . - .. . . . ." " " • " ""



Report No. 5376 Bolt Beranek and Newman Inc.L
collisions, the density scoring strategy working middle-out from
multiple seeds has been shown to be admissible. Density scoring
does not depend on any assumptions about the basic scores to

pwhich it is being applied other than that they be additive (and
capable of division). Hence the density method can be applied to
either the original quality score or to a shortfall score.

2.5 Shortfall Density Scoring

The shortfall density method of scoring partial hypotheses
is a combination of the shortfall and density methods.
Experimental comparison of the algorithms [14] suggests that the
shortfall density method is superior to quality density, which is
in turn superior to the shortfall method alone. The superiority

jof the density methods over the shortfall method can be accounted
for by the excessive conservatism (over optimistic scoring of
alternative hypotheses) of the shortfall method. The superiority
of the combined shortfall density method can be attributed to an
improved "focus of attentionn strategy as follows:

2.6 Focus of Attention by a MAXSEG Profile

AA major effect of prioritizing events by the shortfall from
a MAXSEG profile is that the score differences in different parts
of the utterance are effectively leveled out, so that events in a
region of the utterance where the best word matches are not very

good can hold their own against alternative interpretations in
regions where there are high quality words. This promotes the
refocusing of attention from a region where there may happen to

15



Bolt Beranek and Newman Inc. Report No. 5376

be high quality accidental word matches only slightly worse than
the best, to other regions whose best word match quality may not
be as great. If this were not done, then many secondary matches
in the high scoring region could be considered before any
theories worked their way across the low scoring regions. Thus,
an apparently satisfactory and intuitively reasonable strategy

for focusing attention emerges from the same method that

guarantees admissibility.

Notice that in the shortfall density method, the MAXSEG

profile is no longer serving the role of guaranteeing
admissibility that it did in the shortfall method. In this case,
the admissibility is guaranteed by the nature of densities and
island collisions. Rather, in this method the MAXSEG profile is
used only to provide this leveling of effort over portions of the
utterance to promote the refocusing of attention. In fact, it is

no longer necessary that the NAXSEG profile be an upper bound
(although there are undesirable effects when the shortfall
density goes negative).

2.7 Admissible versus Inadmissible Strategies

The admissible strategies discussed above are only some of
the control strategy options implemented in the HWIN speech
understanding system. In addition there are a large number of

strategy variations that result in deliberately inadmissible
strategies, including strictly left-to-right density strategies
and 'hybrid" strategies that start near the left end of an
utterance and work left to the end and then left-to-right across

the rest of the utterance. For reasons of time and resource

16



Report No 36Bolt Brnkand Nema nc.

limitations, the final test run of the HWIM system was made using
one of the inadmissible hybrid left-to-right strategies.
Subsequently, a much smaller experiment was run to compare
various control strategies on a set of ten utterances chosen at
random from the larger set. Although this sample is much too
small to be relied on, the results are nevertheless suggestive.
For two comparable experiments using the best left-to-right
method (left-hybrid shortfall density) and the best ne.arly

51 admissible method (shortfall density with ghosts, island
collisions, and direction preference), both with a resource
limitation of 100 theories, the inadmissible left-hybrid strategy

d found the best (and in these cases the correct) interpretation
within the resource limitation in 6 of the 10 cases and
misinterpreted two additional utterances with no indication to
distinguish them from the other 6. The shortfall density
strategy found 5 correct interpretations (not a significant
difference for this size sample) and rejected the others.

If this left-hybrid strategy were used in an actual
application with comparable degrees of acoustic degradation
(e.g., due to a noisy environment)? the system would claim to
understand most of its utterances, but would actually
misunderstand a significant fraction of those due to failure to
find the best interpretation. The shortfall density strategy, on
the other hand, would only misunderstand an utterance if its

p correct interpretation actually had a lower score than the one it
found (hopefully a negligible fraction of the cases).

The middle-out shortfall density algorithm in the above
experiments expanded only 50% more theories (and incidentally
used only 30% more cpu time) than did the left-hybrid strategy.
Although as we said before, this test set is much too small to

17



Bolt Beranek and Newman Inc. Report No. 5376

draw f irm conclusions, the success rate of the two methods are
* not much different, except that the middle-out method is clearly

less likely to make an incorrect interpretation. If one

considers proposals to improve the performance of inadmissible
strategies by having them continue to search for additional

interpretations after the first one is found, then the time

* difference shown above could easily be reversed and there would
still be no guarantee that the interpretation found would be the

* best one.



Report No. 5376 Bolt Beranek and Newman Inc.

3.* ATN GRAMMARS

Having considered the issue of control strategies for using

* higher level knowledge in speech understanding, let us now turn
to the problem of representing and using that knowledge to make

the judgements required. The principal device that I will

present for this purpose is the concept of an Augmented

Transition Network (ATN) grammar. ATN grammars, as presented in
[91, are a form of pushdown store automata, augmented to carry a

set of register contents in addition to state and stack

information and to permit arbitrary computational tests and

actions associated with the state transitions. Conceptually, an
ATN consists of a network of .at~At representing partial states

of knowledge that arise in the course of parsing a sentence.
States are connected by A=L indicating kinds of constituents
that can cause transitions from one state to another. The states

in the network can be conceptually divided into "levels*

corresponding to the different constituents that can be
recognized. Each such level has a start state and one or more

pfinal states, and behaves as a recognition automaton for its
particular kind of constituent.

Transitions between states are of three basic types,

indicated by three different types of arc. A WRD (o r CAT)
transition corresponds to the consumption of a single element
from the input string, a JUMP transition corresponds to a

transition from one state to another without consuming any of theI
input string, and a PUSH transition corresponds to the

consumption of a phrase parsed by a subordinate invocation of

some level of the network to recognize a constituent.

ATN' s have the advantage of being a class of automata into

19

-. 4 4



Bolt Beranek and Newman Inc. Report No. 5376

which ordinary context-free phrase structure and "augmented"

phrase structure grammars have a straightforward embedding, but

which permit various transformations to be performed to produce

pgrammars that can be more efficient than the original. Such

transformations can reduce the number of states or arcs in the
grammar or can reduce the number of alternative hypotheses that
need to be explicitly considered during parsing. Both kinds of

efficiency result from a principle that I have called

*factoring", which amounts to merging common parts of alternative
paths in order to reduce the number of alternative combinations
explicitly enumerated. Conce~tai facto.ring results from merging

* common parts of the grammar to make the grammar as compact as

* ~possible, while byp~.theaiji fac.torxing results from arranging the

grammar so as to merge common parts of hypotheses that will be
enumerated at parse time (see [91 for further discussion).7-

Figure 2 illustrates a small fragment of an ATN for

recognizing basic sentences of English. This grammar compactly

represents the information that would be specified by t.he

following infinite set of context free grammar rules:

S ->NP Vint
S ->NP Vtr NP
S ->NP Vind NP NP
S ->NP AUX Vint
S ->NP AUX Vtr NP
S ->NP AUX Vind NP NP
S ->AUX NP Vint
S ->AUX NP Vtr NP

W.S ->AUX NP Vind NP NP
S ->NP Vint PP
S ->NP Vtr NP PP
S ->NP Vind NP NP PP

S ->NP Vint PP PP

20



Report No. 5376 Bolt Beranek and Newman Inc.

S -> NP Vint PP PP PP

(where NP stands for Noun Phrase, PP for Prepositional

Phrase, Vint for an intransitive verb, Vtr for a transitive verb,
Vind for a verb that takes indirect objects, and AUX for an

auxiliary verb such as *is" or 'does").

PP

? ,2

-.

4j

NP W NP P O

4.

NP NP

4PP

P. IG. 2. AN EXAMPLE OF AN ATN GRAMM4AR

ATN grammars are very effective for specifying complex

grammnars of natural language as well as f or a variety of other
structured entities. One can think of them as a class of

421



Bolt Beranek and Newman Inc. Report No. 5376

abstract perceptual automata for recognizing structured sequences
of elements.

A state in an ATN can be thought of dually as a concise
representation of a set of alternative possible sequences of
elements leading to it from the left or as a concise prediction
of a set of possible sequences of elements to be found to the
right. Alternatively, it can be thought of in a right-to-left
mode as a concise representation of a set of possible sequences
of elements found to the right and a prediction of possible
sequences to be found to the left. The reification of these
states as concrete entities that can be used to represent partial
states of knowledge and prediction during parsing is one of the
major contributions of ATN grammars to the theory and practice of
natural language understanding. They are even more important in
representing states of partial knowledge in the course of speech
understanding.

In addition to concisely specifying alternative sequences of
constituents, ATN grammars serve as a conceptual map of possible
sentence structures and a framework on which to hang information
about constraints that apply between separate constituents of a
phrase and the output structure that the grammar would like to
assign to a phrase. This is done through cniins and
structure-building a associated with the arcs of the ATN.
These conditions and actions operate on the constituent being
accepted and a set of regiategs that can hold arbitrary
information picked up elsewhere in the parse. Although in the
original ATN formulation, these were presented as arbitrary LISP
procedures to be executed in the context of a left-to-right parse
of a sentence, they can be viewed as general constraints to be

applied and generalized specifications of intended structure
assignments.

22

.., ... . . ... ...- ... ... . . . . .. . . -.. . . .. . .. . .:



Report No. 5376 Bolt Beranek and Newman Inc.

3.1 HWIM's ATN Grammar Notation

The ATN grammars used by HWIM use five different arc types:

jq PUSH, POP, WRD, CAT and JUMP.

A PUSH arc essentially "consumes" a phrase of a specified
type (e.g. , a noun phrase) by causing a an invocation of a
subordinate transition network corresponding to the desired type

of phrase. If the lower level transition network can
LN successfully accept the next segment of the input string, it is

exited by a POP arc, and processing will continue in the

transition network containing the invoking PUSH arc. Each final

state in a transition network will contain a POP arc that
signifies successful completion of its level of the network and
indicates what structure is to be returned for use by its calling

network.

WRD and CAT arcs are the only terminal consuming (i.e., word

- ~ consuming) arcs in the grammar. That is, they are the only arcs

that advance the "input pointerw that marks the current position

in the input string. (This pointer may move during a PUSH arc,

but only as a result of WRD and CAT arcs taken in the lower

network.) WRD and CAT arcs differ only in the way they express

the set of terminals they can consume. A WRD arc specifies its

terminals explicitly and exhaustively, while a CAT arc specifies

them implicitly via the syntactic-semantic category to which they

must belong.

A JUMP arc causes a transition between states, but does not
* .~ consume a terminal in doing so and hence does not advance the

* ' ~ input pointer.

22



Bolt Beranek and Newman Inc. Report No. 5376

Figure 3 shows the notation used for describing a HWIM ATN

grammar; it is similar to most other ATN formalisms, except that

conditions on arcs are expressed in terms of an action (VERIFY

<condition>) and actions can be embedded in SCOPE statements to

indicate left context dependencies (see section 3.2).

<ATN> -> (<state> <state>*)
<state> -> (<state-name><arc><arc>*)
<arc> -> <W> I <B> I <C> I <J>

<W> -> (CAT <category-name> <action>* (TO <state-name>))
(WRD <terminal "word"> <action>* (TO <state-name>))

<B> -> (PUSH <state-name> <action>* (TO <state-name>))
<C> -> (POP <form> <action>*)
<J> -> (JUMP <state-name> <action>*)

<action> -> <actionl> I
(SCOPE <scope-spec> <actionl> <actionl>*)

<actionl> -> (VERIFY <actionl>) I
<register-etting-action> -
<structur.-building-action> I
<testing-action>

<scope-spec> -> (<state-name> <state-name>*)
NIL I T

FIG. 3. A BNF SPECIFICATION OF HWIM'S ATN GRAMMAR NOTATION

3.2 A Middle-Out View of an ATN Grammar

HWIM's island-driven control strategy requires a parser that

can begin in the middle of an utterance and extend an island in

either direction. This entails an ability to parse right-to-left
as well as left-to-right and to do so with an incomplete context

24

4' . . . . . - . . . , . . . . . . . , . . .- . ' . - .. , -- . ' . .



r- T-T 71. NV

Report No. 5376 Bolt Beranek and Newman Inc.

in the other direction. Since ATN grammars are normally
conceived as parsing automata that proceed in a lef t to right
manner f rom. the beginning of a sentence, setting and testing
registers as they go, it is not immediately obvious that they
could be used by such a parser. In this section we will discuss
how this can be done.

In one view of ATN grammars, a state is viewed merely as a
bundle of arcs, and an arc is merely a component of its begin-
state. While this conceptual ization is adequate for left to
right parsing, for HWIM's parser, it is more useful to think of
an arc as a connection between two states that can be traversed
in either direction. An arc, then, is associated with a left
state, a right state, a type (WRD, CAT, etc.), a label (NP, AUX,
Vint, etc.), a set of context-free actions that can be done when
the arc is first encountered regardless of the direction or
context, and a set of context sensitive actions, which will be
deferred, if necessary, until adequate left context is available.
A state, then, has two associated collections of arcs, one set
leading to the left and the other leading to the right.

The major difficulty in using an ATh grammar for middle-out
parsing stems from the way that conditions and actions on the
arcs use registers. During normal left-to-right processing in a
standard ATN parser, actions call for both accessing and changing
the contents of registers that have been set by arcs to their
left in the grammar. We will say that an arc action in the
grammar has a it deedec when it either requires the value
of a register that is set somewhere to the lef t or changes the
value of a register that is used somewhere to the left. If such
an action is executed on an arc in the middle of a sentence
without having processed a suitable left context problems will

25



Bolt Beranek and Newman Inc. Report No. 5376

arise. In the first case, executing the action without the left
context could not produce the correct effect, while in the second
case, executing it prematurely in a right-to-left parsing would
cause the later execution of the arc action to the left to get
the wrong value. Such arc actions are referred to as Context
se.iti. Fortunately, fewer than half of the actions in the
HWIN ATN grammars turn out to have such dependencies.

This problem is solved in HWIM's grammars by providing all
context sensitive actions with a z specification that
indicates what left context is necessary before the action can be
executed. By analysis of the paths through the grammar, it is
possible to determine, for each context sensitive arc action, a
set of states having the property that the action can be safely
done if its execution in a right-to-left parse is delayed until
the parse has passed through one of those states. We refer to
this set of states as the jgp of the action, an indication of
how far left in the grammar its left-to-right dependency extends.
The EWIM parser interprets scope specifications on arc actions by
saving the action with its local context until its scope is
satisfied (if it is not already satisfied when the action is
first considered).

This scoping mechanism allows a grammar that was created
from a left-to-right viewpoint to be used in middle-out parsing
with very little modification. It is only necessary to add
appropriate scope specifications to the context-sensitive
conditions and actions. To the grammar writer, the ATN can
remain basically a left to right machine; its arc actions can be

written almost as if the parser were operating only left to
right. The grammar has actions on arcs where they should be
executed if the entire appropriate left context were set. As in

26



-d - . , + . . .. - + + . , +" " + " -. . .

Report No. 5376 Bolt Beranek and Newman Inc.

0 standard left-to-right grammars, in no case is it ever necessary

to worry about the right context. This is not necessarily the

best way to represent bidirectional ATN grammars, but it works.

It would be possible to construct an algorithm to compute the

scopes automatically if the dependencies of the arc actions were

explicitly marked, but for reasons of expediency no such facility

was implemented in HWIM. Rather, the scope annotations were

created by hand.

The format of a scope statement is given in Figure 3. The

scope-spec is either a list of state names, T, or NIL. If the

scope spec is a list of state names, then the action(s) can be

executed when the parse begins at or has passed through any state

in that list. If the scope-spec is T, the action is not to be

executed until the parse has hypothesized the left end for that
level of the grammar.

The following example from one of HWIM's grammars

illustrates the notation for expressing scoping:

(S/WHAT-IS-IN-BUDGET
(JUMP S/WHAT-IS-BUDGETED)
(JUMP S/POP

(SCOPE (S/WHAT-DO S/WHAT-HAVE)
(VERIFY (GETR LEFT))
(SETR SUBJ (NPBUILD)))))

From this state in HWIM's grammar, it is possible to jump to

S/POP to end the utterance only if we have a question such as

OWHAT IS LEFT IN THE BUDGET." In these cases the register LEFT
will have been set earlier. If we are parsing right to left, we

must know how far left we must carry the parse before making this

test. The JUMP arc to S/POP indicates in the scope of the VERIFY

action that the parse must have passed through either S/WHAT-DO

or S/WHAT-HAVE.

27

,I, + , t " - " + " t' q ' : 'i + i+ + i i



Bolt Beae n Newman IcReotNo. 5376

3.3 Cascaded ATN's

one of the long standing problems in natural language-
understanding has been dealing with the interaction of syntactic
and semantic information. Ways of achieving close interaction
between syntax and semantics have traditionally involved writing
semantic interpretation rules in 1-1 correspondence with phrase
structure rules (e.g., Thompson [71), writing "semantic grammars"
that integrate syntactic and semantic constraints in a single
grammar (e.g., Burton [3]), or writing ad hoc programs that
combine such information in unformalized ways. The first

approach requires as many syntactic rules as semantic rules, and
hence is not really much different from the semantic grammar
approach (this is the conventional way of defining semantics of
programming languages). The third approach, of course, may yield
some level of operational system, but does not usually shed any -

light on how such interaction should be organized, and is

difficult to extend.

The semantic grammar approach, while effective, tends to
miss generalizations and its results do not extend well to new
domains. It misses syntactic generalizations,, for example, by
having to duplicate the syntactic information necessary to
characterize the determiner structures of noun phrases for each
of the different semantic kinds of noun phrase that can be
accepted. Likewise, it tends to miss semantic generalizations by
repeating the same semantic tests in various places in the
grammar when a given semantic constituent can occur in various
places in a sentence. BWIN's *pragmatic" grammar is an instance
of the semantic grammar approached carried one more level, and
thus gains its integration at the expense of modularity,
transportability, and brevity.

28



.. . . . . . . . . . . . . . . . .

Report No. 5376 Bolt Beranek and Newman Inc.

Rusty Bobrow's RUS parser [1] is the first parser to my

knowledge to make a clean separation between syntactic and

semantic specification while gaining the benefit of early and

incremental semantic filtering and maintaining the factoring

advantages of an ATN. Its operation can be characterized by a

generalization of ATN grammars that I have called cascaded ATN's

. (CATN's). A cascade of ATN's provides a way to reduce having to

say the same thing multiple times or in multiple places, while

providing efficiency comparable to a semantic grammar and at the

same time maintaining a clean separation between syntactic and

semantic levels of description. It is essentially a mechanism

for permitting decomposition of an ATN grammar into an assembly

of cooperating ATN's, each with its own characteristic domain of

responsibility.

A CATN is essentially a sequence of ATN transducers with

each successive machine taking input from the output of the

previous one. Specifically, a CATN is a sequence of ordinary

ATN's that include among the actions on their arcs an operation

TRANSMIT, which transmits an element to the next machine in the

sequence. The first machine in the cascade takes its input from
the input sequence, and subsequent machines take their input from

the TRANSMIT commands of the previous ones. The output of the

final machine in the cascade is the output of the machine as a

whole. The only feedback from later stages to earlier ones is a

filtering function that causes paths of the nondeterministic

an earlier one.

The conception of cascaded ATN's actually arose from

observing the interaction between the lexical retrieval component

and the linguistic component of the HWIM speech understanding

29



7-7

Bolt Beranek and Newman Inc. Report No. 5376

system. HWIM's lexical retrieval component made use of a network
* that consumed successive phonemes f rom the output of an acoustic

phonetic recognizer and grouped them into words. Because of
phonological effects across word boundaries, this network could
consume several phonemes that were part of the transition into
the next word before determining that a given word was possibly
present. At certain points, it would return a found word
together with a node in the network at which matching should
begin to find the next word (essentially a state remembering how
much of the next word has already been consumed due to the
phonological word boundary effect). This can be viewed as an ATN
that consumes phonemes and transmits words as soon as it has
enough evidence that the word is there.

The lexical retrieval component of HWIM can thus be viewed
as an ATN whose output drives another ATN. This leads to the
conception of a complete speech understanding system as a cascade
of ATM's,. one for acoustic phonetic recognition, one for lexical
retrieval (word recognition), one for syntax, one for semantics,
and one for subsequent discourse tracking and other pragmatic

constraints.

4' 3.4 Lexical Retrieval as an ATN

One of the difficult aspects of constructing a lexically-
driven speech understanding system is providing a mechanism to
efficiently determine what words in the lexicon match the input.
At learnt for conventional serial machines, it is not acceptable
to separately compare each word in a large vocabulary against the
input string. However, by viewing the lexicon as an ATM grammar

30



Report No. 5376 Bolt Beranek and Newman Inc.

of acceptable phoneme sequences, one can factor together the

P .-; common parts of words that begin the same, so that the grammar

begins from a single state with arcs for each phoneme that can

begin a word leading to states that compact'.y represent the
sequence of phonemes recognized so far and the set of phonemes

that can follow them. This much structure, which is illustrated

in Figure 4, is the same as a classical decision tree, and is

effectively the same structure used by the CMU Harpy system to

organize its entire recognition system. However, by viewing it

as an ATN, it is possible to account for some more subtle

phenomena.

ABLE

APPLE L E
L E

FIG. 4. A LEXICAL DECISION TREE

Specifically, by viewing the lexical component is a stage of

an ATN cascade that accepts a sequence of phonemes and generates

a sequence of words, it is possible to model the behavior of

31



Bolt Beranek and Newman Inc. Report No. 5376

I
Klovstad's lexical retrieval component in the HWIM system [11],
whereby cross-word-boundary phonological rules are efficiently
handled. Klovstad's technique consisted of wrapping such a

lexical decision tree around on itself by allowing jump
transitions from its leaves to its root, so that viewed as an ATN
it accepted sequences of words rather than simply single words.
Klovstad then mitched cross-word-boundary phonological rules
across these special jump transitions and spliced in the
resulting changes in cross-word-boundary pronunciations from the
point in the word where the change began to the point in the
decision tree where the remainder of the next word would begin.

Klovstad was then able to merge common inter-word
coarticulation patterns by remembering the word involved on the
left (as if in an ATN register) before entering the portion of
the network that was shared by different words, and he was able

to confirm that word if he found the appropriate coarticulation
pattern (at which point he would already have consumed an initial
portion of the next word and be positioned at the right point in
the discrimination net to continue recognizing whatever word it
was). We can view this as transmitting the recognized word
slightly out of synchrony with the consumption of input phonemes.

The lexical retriever can often identify what word is expected
before it gets all the evidence necessary to confirm its

presence. When it has confirmed the presence of a word, it will
sometimes have already begun to accumulate evidence for the next
one. (This complexity of the word boundary phenomenon is one of
the major difficulties that sets speech understanding apart from
text understanding, where the boundaries between words are
clearly marked by spaces and punctuation.)

32

, , , =. , , - ,. .. ' .' .- . . -,- .. ... .... '; .-.. .. .- ... . - -. . . - . . . .. : . , _:.___ .. *.



* - • , ° % S. *.. V . . . . V V. -' .. - ' . :- j .' .' .- - ' < " " - " " " '" " "i jt

Report No. 5376 Bolt Beranek and Newman Inc.

3.5 Benefits of CATN's

The decomposition of a natural language analyzer into a

cascade of ATN's gains a "factoring" advantage similar to that

which ATN's themselves provide with respect to ordinary phrase

structure grammars. Specifically, the cascading allows

alternative configurations in the later stages of the cascade to

share common processing in the earlier stages that would

otherwise have to be done independently. That is, if several

semantic hypotheses can use a certain kind of constituent at a

given place, there need be only one syntactic process to

recognize it.

Cascades also provide a simpler overall description ot the

acceptable input sequences than a single monolithic ATN combining

all of the information into a single network would give. That

is, if any semantic level process can use a certain kind of

constituent at a given place, then there need be only one place

in the syntactic stage ATN that will recognize it. Conversely,

if there are several syntactic contexts in which a constituent

filling a given semantic role can be found, there need be only -

one place in the semantic ATN to receive that role. (A single

network covering the same facts would be expected to have a

number of states on the order of the product, rather than the

sum, of the numbers of states in the individual stages of the

cascade.)

One might note here as an aside that an additional advantage

provided by the factoring aspects of a cascade, for future

systems that will learn much of their behavior, is the

localization of activities in a single place where a given

linguistic fact to be learned. Without such factoring,

33



Bolt Beranek and Newman Inc. Report No. 5376

Ole essentially the same syntactic fact might have to be learned
separately in different semantic contexts, and a given semantic
fact might have to be learned separately in different syntactic
contexts. Moreover, the separation of the stages of the cascade

provides a decomposition of the overall problem into individually
learnable skills. These facts may be of significance not only
for theories of human language development and use, but also for

computer systems that can be easily debugged or can contribute to

their own acquisition of improved language skill. The above
fct suggest that the traditional characterization of natural

langagein terms of the levels of phonemes, syllables, words,

phrases, sentences, and higher level pragmatic constructs may be

more than just a convenient way to present the subject.

344



Report No. 5376 Bolt Beranek and Newman Inc.

4. MIDDLE OUT PARSING WITH ATN'S

HWIM's control strategy requires that the syntactic
pcomponent be able to take any island (i.e., consecutive sequence

of word matches) and determine if it can be parsed as an
acceptable fragment of a sentence. If so, the syntactic
component must be able to return a list of words and categories
that would form acceptable extensions to the fragment at either

7end. The constraints this places on the parser are that it must
be able to start at any point in the grammar and at any point in
the input and work in either direction. Moreover, it must be

able to process islands that may partially or fully traverse
several different levels of the grammar. In this section we will

:4 describe a middle-out parsing system for ATN grammars that
supports the island-driven control strategies of HWIM.

Whereas the state of a parse for a conventional left-to-
-.. right ATN can be represented by the current state, the register

contents, and a stack of unfinished configurations at higher
levels, the representation of a configuration for a middle-out

. parser is considerably more complex. Since in general one needs
to represent the parsing of an island that contains incomplete
constituents at each end, a representation is required that can
deal with fragments such as "man saw the girl in' as in 'The man

saw the girl in the park." This in general requires a collection
of partial analyses of segments at different levels whose overall
structure is in the shape of a "stile* (a set of steps that goes
over a fence). That is, there is some topmost fragment with (in

general) an incomplete partial analysis at a lower level at both -

its left and its right, which can in turn have partial analyses
at still lower levels adjacent to them, etc. The prototypical
structure is illustrated in Figure 5.

35

" " ""'" "' "-" "" " " - " - i ..: :



4

Bolt Beranek and Newman Inc. Report No. 5376

N - ET N:

PREPi -
• man saw the girl in

FIG. 5. A PROTOTYPICAL ISLAND CONFIGURATION IS SHAPED LIKE A
STILE -;

The horizontal lines in Figure 5 correspond to transitions
from one state to another annotated with the word in the input

that enabled the transition. Sequences of such transitions at a

single level will be called segment configurations (or SCONFIGS)

and a collection of SCONFIGS covering an island (forming one or
more stiles) will be called an island configuration (or ICONFIG).

In general, an SCONFIG in an ICONFIG may be adjacent to several

other SCONFIGs at other levels, and thus participate in several

different stiles covering the island, corresponding to different

ways to parse it. We will refer to each sequence of compatible

SCONFIGs forming a stile covering the island as a 2&th through
the island. The parser will at various points need to trace

paths through the island in order to determine which SCONFIGs at
one end of the island are compatible with which SCONFIGs at the

other.

36

I.



Report No. 5376 Bolt Beranek and Newman Inc.

• The wavy vertical lines in Figure 5 correspond to relations

of indirect pushing and popping in the ATN grammar. It is
important that the relationships be indirect, so that the
representation can be nonexplicit about the number of possible
intervening levels of structure that might occur in connecting

one such SCONFIG to another. This use of indirect pushing and
popping relations is similar to the technique used in Earley's

algorithm [4] to avoid the combinatorics associated with
explicitly enumerating alternative stacks and has similar
advantages here.

4.1 State Relations Used in the HWIM Parser

The HWIM parser makes use of a variety of indices
constructed from its ATN grammar in order to efficiently perform
its analyses. One of these is an index by word and syntactic

category to all of the WED and CAT arcs in the grammar, so that
given a word, it can efficiently identify all of the arcs that

can use that word. Another operation that it needs to perform
efficiently is to identify whether an arc can be joined to an

SCONFIG by a sequence of nonconsuming transitions (i.e., jumps,
pushes, and pops). To support this it makes use of indices based

on a set of relations between states that is in some sense a
generalization of the "left closurew relationship used in
Earley's algorithm, LR-k grammars and selective top-down and

*1I selective bottom-to-top parsing algorithms.

Let us define the relation B (for "begin*) to hold between
two states x and y if there is a push arc leaving state x that
pushes to state y. Similarly we will define the relation C (for

37

, : - ., , . ,. ., , ,, .. .. .. - .. .. .. ... . .,.. . . . . . . . ., - . .. . . :, -



Bolt Beranek and Newman Inc. Report No. 5376

acomplete") to hold between states x and y if state x can pop a
constituent that is consumed by a push arc whose destination is
state y. That is, the relation B holds between states bridging
the left boundary of a constituent and C holds between states
bridging a right boundary. We will define the relation J to hold
between x and y if there is a jump arc from state x to state y.

The relations B, C, and J cover all of the ways that an ATN
can make transitions between states without consuming any input.
Some generalized closure relations derived from these relations
(and their converses, which we will can UB, UC, and LJ, for
"unbegin", luncomplete", and "left jump") play an important role
in the HWIM parser. We use the Kleene star (*) to indicate 0 or
more occurrences of a relation and the symbol + to represent the
disjunctive union of two relations. For example, the relation (x
J* y) is true if x is the same state as y or if there exists some
sequence of jump arcs leading from x to y. The relation (x (J +

P) y) is true if their is either a jump arc from x to y or if
there is a push arc leaving state x that pushes to y. We can also
concatenate these basic relationships to describe a sequence of
transitions. For example, the relation (x J*BJ* y) is true if
there are intermediate states z and w such that the relations (x
J* z), (z B w), and (w J* y) are all true.

Using this notation we can now name some additional
relations that are important to the HWIM parser. These are:

BI - B (J* B)*
C1 - C (J* C)* (J* B)*
UBI - UB (LJ* UB)* (LJ* UC)*
UC! - UC (LJ* UC)*

The relation BI corresponds to indirect pushing from the
left, while CI corresponds to going up and over a stile of

38



,7 Report No. 5376 Bolt Beranek and Newman Inc.

nonconsuming arcs by completing some phrases and then beginning

some new ones. UBI corresponds to going over a stile from right
to left, while UCI is the transition from higher to lower levels

coming from the right (the left-hand version of a push). Even

more useful than these relations are the relations J*BJ*,
J*CIJ*, LJ*UBILJ* and LJ*UCILJ*. These can be intuitively

described in English as the paths that will reach all possible
states on other levels of the grammar that can be reached using

only non-consuming arcs. The utility of these indices is fairly
clear; if there is a segment configuration ending in state x, and
a new word is to be added to the island that can be consumed by
an arc that begins at state y, then there can be a path that will

connect the island to the new word only if the relation (x (J* +

, J*BIJ* + J*CLJ*) y) is true.

4.2 Paths

Two adjacent SCONFIGS in an ICONFIG will be said to be

9matibIg if the left one stands in the (J*BIJ* + J*CIJ*)
relation to the right one (i.e., the right state of the left one
stands in that relation to the left state of the right one).

That is, two adjacent segments are compatible if the left one
either pushes or pops, perhaps indirectly, to the right one. A
sequence of compatible adjacent segments will be called a 9Ath

provided that it contains no sequence of three segments such that

the first stands in the J*B!J* relation to the second, which in
turn stands in the J*CIJ* relation to the third. (Whenever such
a compatible sequence of three segments exists, the middle one
can be completed and consumed by a PUSH arc that incorporates it

into either the left or right segment or perhaps combines all

three into a single segment.)

39



Bolt Beranek and Newman Inc. Report No. 5376

Associated with each path is an indication of which segment
is at a higher level in the grammar than any other. Note that it

is possible to have two paths that are identical except for which
segment is chosen as the top. Marking the top segment of a path
divides the remaining ones into two groups, which must then be at
successively lower levels as they get further away from the top.

Paths are used by the HWIM parser for making predictions
adjacent to an island. In order to add a new word to an island,
it may be necessary to complete one of the SCONFIGs at that end
and pop its constituent to one of the internal SCONFIGs, which
will then reach the end of the island and connect to the new
word. The internal SCONFIGs that need to be considered are on
the paths leading from the SCONFIG being completed. Also, when a
new word is added to one end of an island, it may be incompatible
with some of the SCONFIGs at that end. These incompatible
SCONFIGs are purged from the representation of the resulting new
island. However, their removal may leave other internal SCONFIGs
"disconnected" in that they do not now participate in any paths
through the island. All such SCONFIGs are purged from the
representation. Ultimately this may result in the removal of
SCONFIGs at the other end of the island. In this way, words
added at one end of an island can result in tightening the

predictions of compatible words at the other end.

4.3 The Parser

The HWIM parser has four basic actions, corresponding to

different tasks it is called upon to perform by the Control
component. The first, Ad event processing, creates a new one-

40



7 7 . 77

Report No. 5376 Bolt Beranek and Newman Inc.

word island and a representation for every path covering that

word that the grammar allows (i.e., each arc in the grammar that
can consume it). The second, wrd event processing, adds a new
word to one end of an existing island, extending those paths that

N allow the new word and eliminating those SCONFIGs that do not

participate in any such path. The third action of the parser is

n event processing. This takes place when an existing island
has reached one end of the utterance. The parser then extends
the paths that can reach the start state of the grammar (for a

left end event) or a final state of the grammar (for a right end
event) without consuming any additional words. If the other end
of the island is open, the parser returns a set of predictions at

that end, which may be more restricted than before; if that end

is also complete, the parser returns a complete parse.

The fourth type of action, inland fl.lisi i event processing
allows the Control component to combine two islands with a one-

word gap between them and a new word filling that gap. Although
one can develop special techniques for combining the parses of

two islands, it is sufficient to simply perform new word events
until one island has incorporated all the words of the other.
This is how island collision events were implemented in the HWIM

parser, for reasons of expediency.

4.4 The Principal Parser Functions

In the remainder of this section we will describe the main

functions in the HWIM parser and their operation. The
presentation is intended to reveal some of the complexities of -
the middle-out parsing algorithm. There is not enough detail to

41

.................... .............



Bolt Beranek and Newman Inc. Report No. 5376

guide an implementation, although with diligent study of the

section that might be possible. However, the discussion is

pretty demanding, so the casual reader may well want to skim it

or skip to the next section.

The functions described here are all suffixed -RIGHT to

indicate that they are used when adding a new word to the right

of an existing island. There is a set of similar functions
(suffixed -LEFT), which work on adding words to the left. The
differences between the left-to-right and right-to-left functions
are small, brought on by the fact that a new level is begun at
one particular state on the left (the label of the PUSH arc) but
can pop from any of a number of accepting states (states with POP
arcs) on the right. These differences usually involve only an
extra loop to be executed a bounded number of times.

4.5 Starting an Island

To begin a one-word island, thi parser finds all arcs in the
grammar that can consume the new word match, using an index of
pointers from each word and category to the arcs that consume
them. It processes those arcs, creating a segment configuration

(SCONFIG) for each one. These are collected into an island
configuration (ICONFIG), which is then processed to find the
proposals to return to Control.

4.6 Processing an Arc

The basic transition function in the parser, DOARC, takes an

42

S .. .. 9 . . .-. . N N .t . .. . -mm,( m ( I.(ml -- bk "k ~ dmd dd



r r, C, . r+ , , . + , . + , ° - , . . . - . . , . - . . , -. . . . ... °+

Report No. 5376 Bolt Beranek and Newman Inc.

Ii
old SCONFIG, an adjacent arc, and, if it is a consuming arc, a
word or constituent to be consumed. The result is a new SCONFIG
representing the state of the computation after the new arc and
input have been incorporated. DOARC is applied to a list of
SCONFIGs to be processed for a given arc and direction. The
result is a new list of SCONFIGs. Its operation is as follows:

For each SCONFIG do:

a) Verify that the arc is adjacent to the old SCONFIG;

b) Do the context free actions on the arc;

c) For each context sensitive action on the arc: - if the
context is not yet complete, create an undone scoped
action to be added to the new SCONFIG - otherwise
evaluate the action.

d) If the direction is to the left, see if the scope of
any saved actions in the old SCONFIG has now been
satisfied. If so, evaluate those actions.

e) Construct the new SCONFIG by: - setting the new
boundaries and end states - saving the registers and
undone scoped actions - adding the left state of the
arc to the list of states that the computation has
passed through (if. the direction is to the left).

4.7 Connecting a New Word to an Island

In extending a segment at the end of an old island to meet a
new word to be added, the sequence of intervening non-consuming

arcs that make the connection can be all at the same level of the
network (the J* case); they can change to a lower level (the
J*BIJ* case); or they can change levels in a way equivalent to
one or more POPs followed by zero or more PUSHes (the J*CIJ*

43



77 --

Bolt Beranek and Newman Inc. Report No. 5376

case). The function CONNECT-RIGHT takes groups of SCONFIGs that
terminate at the right boundary of an existing island and joins
them to sets of arcs that can consume the new word to be added.

We will call these arcs that can consume the new word that
CONNECT-RIGHT is trying to connect to the island the ca]tiana±J2
arcs. CONNECT-RIGHT calls a function EXTEND-PATHS-RIGHT to do
most of the work.

EXTEND-PATHS-RIGHT follows jump transitions to states that
either 1) begin a destination arc, 2) push for a constituent that
contains a destination arc, or 3) pop from the current
constituent to a higher level that contains (or can then push
for) a destination arc. EXTEND-PATHS-RIGHT begins from an

SCONFIG group whose members share the same right boundary and
completes the JUMP paths on that level that are required to reach

the states mentioned above.
'I..

EXTEND-PATHS-RIGHT is used in several contexts in CONNECT-

RIGHT, so it must have a way of deciding which of the above cases
are relevant. To do this it must be supplied with an argument

(TRYDIRS) indicating how many of the above three ways to look for
a connection. The operation of EXTEND-PATHS-RIGHT can be

described as follows:

Let J*TOSTATES be the set of states that can J* to one of
the destination arcs. Let J*FROMSTATES be the union of the J*
sets of the right end states of the input SCONFIGs.

If the value of TRYDIRS is 1 or more (i.e., always), EXTEND-
PATHS-RIGHT considers states on the same level as the input
SCONFIGs (i.e., the states in J*FROMSTATES). All possible jump
paths that reach one of the destination arcs are processed by
DOARC. The resulting SCONFIGs are collected into groups

44



* -. - - -4-

Report No. 5376 Bolt Beranek and Newman Inc.

according to their rightmost state and extended to include the
destination arcs to which they attach.

In addition, if the value of TRYDIRS is 2 or more, then
EXTEND-PATHS-RIGHT considers paths that lead to a lower level

constituent, as well as ones on the same level as the input
SCONFIGs. Each of the states x in J*FROMSTATES is also tested to

:I see if it can reach a state y in J*TOSTATES via a B! transition.

If so, then all jump paths are completed from the input SCONFIGs

to state x, and new SCONFIGs starting in state y are created and
given EXTEND-PATHS-RIGHT with TRYDIRS = 1.

4In addition, if the number of directions (TRYDIRS) is 3,
EXTEND-PATHS-RIGHT also considers paths that complete segments of

the input SCONFIGs and return to a higher level. These higher
levels may contain one of the destination arcs or may then push
for new constituents that contain a destination arc. Note that
these paths are just the C! set. For each state x in
J*FROMSTATES that can reach a state in J*TOSTATES via a CI

transition, all jump paths from the input SCONFIGs to x are

created, and the resulting group of SCONFIGs is placed in a

completion queue CIQ.

4.8 Processing the Completion Queue

The CIQ queue contains all SCONFIGs that have reached an
accepting state. However, there is a major difference between
those of its segments which are now complete at both ends and
those which are still incomplete at the other end. In the first
case, the appropriate constituent must be created and the process

resumed at the higher level (COMPLETE-RIGHT). In the second

45

I % . -, ._. _ . ' --



Z 7

Bolt Beranek and Newman Inc. Report No. 5376

case, all states in the C! set of the right state of the segment

must still be considered for extension, since the segmrnnt has no

left context.

SPLITCIQ checks the left boundary of each SCONFIG in the
CIQ. If it is the left boundary of the island, then the segment

is considered open and is put in the CIOPENLEFTQ. If it is within
the island, then SPLITCIQ picks up RSTATES, the list of right end

states, from the list of segments whose right end coincides with

the left end of the segment being considered. This is done by

keeping an index of segments in the island by right boundary. If
there is an intersection between RSTATES and the UBI set of the

left end state of the SCONFIG being considered, then the SCONFIG
could have been pushed for from one of those segments, so the

SCONFIG is put in the CICOMPLETEQ. If there is an intersection
between RSTATES and the UC! set of the left end states of the

SCONFIG, then it is possible for the SCONFIG to belong to a path

in which it is the highest level SCONFIG. It is therefore put in
the CIOPENLEFTQ. It is possible for an SCONFIG to be in both

queues as a result of different possible paths.

At the end of this process, CIOPENLEFTQ is given to EXTEND-
PATHS-RIGHT with TRYDIR - 2, and CICOMPLETEQ is given to a

function COMPLETE-RIGHT.

4.9 Completing a Constituent

The function COMPLETE-RIGHT is called to build a constituent

for a segment that can connect to a destination arc by popping
and which is pushed for (perhaps indirectly) by an SCONFIG to the
left in the island. COMPLETE-RIGHT creates the new constituent

46

........................



RportdNo. 5376 eitnsgmtatBolt Beranek and Newman Inc.I

tbepopped, joining it to the island in one of two ways. it

may dd t t anexitin semen atthe next higher level, or if

suhasemn does not exist, it will create a new intermediate

segment for each arc that can use the completed constituent and

is compatible with some SCONFIG of the left.

When completing a segment and creating a new constituent,
COMPLETE-RIGHT causes all undone scoped actions to be executed

and creates the new constituent from the label of the POP arc.

COMPLETE-RIGHT then looks to see if any existing segment

immediately to the lef t of the new constituent could have pushed

for it. If so, its PUSH arc is executed to include the new

constituent. COMPLETE-RIGHT also looks to see if any segment to

the left of the new constituent can push for it indirectly and

still reach a destination arc. For each of these cases,

COMPLETE-RIGHT must create a new segment, extend it from its

i beginning state to the state that pushes for the new constituent,

and execute that push arc to create a new segment that is

complete on the left and that includes the new constituent on the

right.

IAfter a segment has been extended to include the new

constituent, it is placed back in the TODOQ because it may need

to be further extended. CONNECT-RIGHT will deal with this

segments that were in the old island.I

4.10 Making Predictions

-4

Al PREDICT-RIGHT 19 a function that creates a list of all

IPA terminal-consuming arcs that can be reached by any path of non-

1 47

Irr



_ - F . - -. ,- , ° " o • - . - ° - - " ° - " •• ° "

Bolt Beranek and Newman Inc. Report No. 5376

consuming arcs from the right end of an island. The word and
category predictions made by the Syntactic component are

collected from this list and a corresponding one for the left end

of the island.

It is not sufficient for PREDICT-RIGHT to merely list all

arcs that can be reached from states that can end the island;

these predictions must be restricted by segment configurations

within the island that are at a higher level than segments on the

right. To make the list of predicted arcs, PREDICT-RIGHT groups

the SCONFIGs by end states and boundaries so that ambiguous
parses of one level are together. For each SCONFIG group at the

right boundary, PREDICT-RIGHT checks to see if it can reach the
- left end of the island without passing through a higher level

*" segment. If so, then all consuming arcs in all states reachable

. by (J* + J*BIJ* + J*ClJ*) are predicted. If not, PREDICT-RIGHT
divides the predictions into two cases. First, all terminal

* consuming arcs in states reachable from the SCONFIG by (J* +

J*BIJ*) are predicted. Secondly, if the SCONFIG has a nonempty
J*C set, then for each SCONFIG to its left that can push for

it, PREDICT-RIGHT repeats the prediction process on the higher
level SCONFIG as if its right end state were the right state of

the PUSH arc that pushes for the segment at the right boundary.

As a result of this process, all predictions on the right that
are compatible with possible paths across the island are

generated.

48



5°

Report No. 5376 Bolt Beranek and Newman Inc.N
5. KIDDLE-OUT PARSING WITH CATI'S

[13] presents a discussion of parsing with CATN's in a
qconventional left-to-right mode. For our purposes, however, it

is interesting to consider the problem of a middle-out algorithm.

;07 Since the breakdown that HWIM imposes between the lexical
retrieval component and the linguistic consultant is exactly the
boundary between two stages of an ATN cascade when viewed
appropriately, the island-driven control strategy coupled with

the middle-out ATN parser described above can be viewed as an
N instance of a CATN parser.

This view of the HWIN system as a middle-out parser for an
"4 ATN cascade suggests an approach to a minor problem that was

present in the HWIM implementation. HWIM's lexical retrieval
component used two dictionary trees, one going left-to-right and
one going right-to-left, in order to support growing an island in1 either direction. This technique did not really deal adequately
with seed words, which were handled by grouping both left-to-
right and right-to-left matches of the same word into a single
*fuzzy word match" (see [14]). Left-to-right seeds could handle
inter-word coarticulation on the right, and right-to-left seeds
could handle such coarticulation on the left, but there was no
mechanism for forming seeds with coarticulation effects at both
ends. The best one could do in such cases was a fuzzy word match
with some of its elements faithfully representing the left end
effects and some representing the right end effects. Neither of
these would have an ideal score because of their failure to model
the coarticulation effect at their other end.

If one used the same approach in the lexical ATN that is
used in the middle out parsing of the linguistic component, then

49

- fW % " . - - - . - , -, . - . ', ." ' .,. ' . ,.°, -. . . . " . .



ii
I!

Bolt Beranek and Newman Inc. Report No. 5376

one could begin word match hypotheses from highly reliable seed
hypotheses such as vowels and sonorants in stressed syllables and
then extend such hypotheses in both directions. This would in
fact be considerably simpler than for the syntactic parser, since
the lexical ATN contains no pushing and popping. An ICONFIG for
the lexical ATN would consist of merely a single SCONFIG
recording: the left and right end states in the lexical ATN, the

to be transmitted or an undone scoped action to set such a

register when a suitable left state is encountered. This
approach would eliminate the need for two separate dictionary
trees, and would create possibilities for somewhat different
factoring of the common parts of the dictionary. (Whereas the
HWIN dictionary tree merges common initial portions of word
pronunciations, this approach would permit merging designed to
capture commonalities on both left and right.)

Perhaps more interestingly, one could introduce a separate
stage of the cascade for a syllable level analysis, with seed
events starting at syllable nuclei and moving outward in both
directions until they encounter adjacent syllables via island
collision. This would have the advantage of moving from reliable
acoustic phonetic evidence into less reliable regions in exactly
the way that a theoretical analysis of the shortfall density
algorithm shows to be effective.

Another application of cascades would be to replace HWIM's
pragmatic grammar with a cascade of separate ATN's for syntax,
semantics, and pragmatic.. This would provide a cleaner
separation between the different sources of knowledge and an
overall reduction in the size of the grammar needed to capture a
comprehensive range of interactions between syntactic, semantic,

so
7 i

........................................................,.-..- ---
-* .* * . . * .. , . - . . .. * .



Report No. 5376 Bolt Beranek and Newman Inc.

and pragmatic phenomena. Further developments along these lines
• ;would include cascades of generalized transition networks [12]

and the use of sophisticated knowledge representation systems

such as KL-ONE [2, 15].

ACKNOWLEDGMENTS

The speech understanding system HWIM is the result of a

large group effort. Participants in the project included

Madeleine Bates, Geoffrey Brown, Bertram Bruce, Craig Cook, Laura

Gould, Gregory Harris, Dennis Klatt, Jack Klovstad, John Makhoul,
Bonnie Webber, Richard Schwartz, and Victor Zue. The middle-out

parser described here was implemented by Geoffrey Brown. The

initial speech research was supported by the Advanced Research

Projects Agency of the Department of Defense and was monitored by

the Office of Naval Research under contract N00014-75-C-0053.

Subsequent theoretical work and the writing of this report was

supported in part by ONR under Contract N00014-77-C-0371.

q

51

-. .:

-. .

B: 4 . . . . . - -



Bolt Beranek and Newman Inc. Report No. 5376

REFERENCES

[I] Bobrow, R.J.
2M E syst.
BBN Report 3878, Bolt Beranek and Newman Inc., 1978.

(2] Brachman, R.J. and Schmolze, J.
An Overview of the KL-ONE Knowledge Representation System.
CogniLa Science, 1984.

[3] Burton, R.R.
Romanti ramMar: An Engineering Tahig fu r

Constructing Natural Language understanding S.
BBN Report No. 3453, Bolt Beranek and Newman Inc.,

December, 1976.

[4] Earley, J.
An Efficient ontext-ZrX Parsing Algo ithm.
Ph.D. Dissertation, Computer Science Dept., Carnegie-Mellon

University, August, 1968.

[5] Lesser, V.R., Fennell, R.D., Erman, L.D., and Reddy, D.R.
Organization of the Hearsay II Speech Understanding System.
Il TZAm. Acousti, sDpaeh, and Si l

Processing ASSP-23N(1):11-24, 1975.

[6] Lowerre, B.T.

Technical Report, Dept. of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1976.

[7] Thompson, F.B.
2hMM mat Itfc inMan-Maching Communication.
Technical Report RN 63TMP-35, General Electric Co., Santa

Barbara, September, 1963.

[8] Wolf, J.J. and Woods, W.A.
The HWIM Speech Understanding System.
In Wayne A. Lea (editor), Trends in SpehReognition,

pages 1-24. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1980.

[9] Woods, W.A.
Transition Network Grammars for Natural Language Analysis.
Q0CI 13(10):591-606, October, 1970.

[10] Woods, W.A., Bates, M., Brown, G., Bruce, B., Cook, C.,

52



Report No. 5376 Bolt Beranek and Newman Inc.

Klovstad, J., Makhoul, J., Nash-Webber, B., Schwartz, R.,
Wolf, J., Zue, V.
ARgg~b Understanding Systems, Final TkmicalRrgress

Ral, Volumes-M.
Technical Report 3848, BBN, 1976.

[11] Woods, W.A., Bates, N., Brown, G., Bruce, B., Cook, C.,
Klovstad, J., Nakhoul, J., Nash-Webber, B., Schwartz, R.,
Wolf, J., Zue, V.
Molum fi, Leicon, LeiaRte a dControl, S

Understanding Sse, Final Zehaly PorssReaa rj/ ,.U oDobjjr12U 1 ,2October IMA.
Technical Report, BBN, 1976.
This volume may be obtained through NTIS by specifying AD

No. A035277.

[121 Woods, W.A.
Resach in Natural jqge Understandin g, O

Prog M e.Qrt IQ. A: Generalizations of AM Gravara.
BBNREP 3963, BBN, August, 1978.

[13] Woods, W.A.
Cascaded ATN Grammars.
Amer. 1. Computational

Linguistics 6(l):1-15, Jan.-Nar., 1980.

[14] Woods, W.A.
Optimal Search Strategies for Speech Understanding Control.
In Webber, B. and Nilsson N. (editors), Readings in

Artificial Intelligence, pages 30-68. Tioga Publishing
Co., Palo Alto, CA, 1981.

1151 Woods, W.A.
What's Important About Knowledge Representation.

Representation, September, 1983.

53



Of ficial Distribution List

Contract N00014-77-C-0371

Copies

Defense Documentation Center -12 Er
Cameron Station

* Alexandria, VA 22314

Office of Naval Research 2
information Systems Program
Code 437

Arlington, VA 22217

Office of Naval Research1
Code 200
Arlington, VA 22217

Of fice of Naval Research1
Code 455
Arlington, VA 22217

A Office of Naval Research1
Code 458
Arlington, VA 22217

Of fice of Naval Research1
-- Branch Office, Boston

495 Summer Street
Boston, MA 02210

Off ice of Naval Research1
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Of fice of Naval Research1
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6
Technical Information DivisionI Code 2627
Washington, D.C. 20380

cont' d.



- --. 2- --

-2-

Naval Ocean Systems Center 1
Advanced Software Technology DivisionCode 5200
San Diego, CA 92152

Dr. A. L. Slafkosky 1
Scientific Advisor
Commandant of the Marine Corps

(Code RD-1)
Washington, D.C. 20380

Mr. E. H. Gleissner 1
Naval Ship Research & Development Ctr.
Computation & Mathematics Dept.
Bethesda, MD 20084

Capt. Grace M. Hopper, USNR 1Naval Data Automation Command
Code OOH
Washington Navy Yard
Washington, D.C. 20374

Mr. Paul M. Robinson, Jr. 1
- NAVDAC 33

Washington Navy Yard
Washington, D.C. 20374

Advanced Research Projects Agency 1
Information Processing Techniques
1400 Wilson Boulevard

- Arlington, VA 22209

Capt. Richard L. Martin, USN 1
_ 507 Breezy Point Crescent

Norfolk, VA 23511

Director, National Security Agency
Attn: R54, Mr. Page
Fort G.G. Meade, MD 20755

. Director, National Security Agency
Attn: R54, Mr. Glick
Fort G.G. Meade, MD 20755

Major James R. Kreer
Chief, Information Sciences
Dept. of the Air Force .
Air Force Office of Scientific Research
European Office of Aerospace
Research & Development

j Box 14
FPO New York 09510

cont 'd. -

I7



-3-

Mr. Fred M. Griffee1
Technical Advisor C3 Division
Marine Corps Development

&Education Commuand
Quantico, VA 22134

4-


